A single EF-hand isolated from STIM1 forms dimer in the absence and presence of Ca2+.

نویسندگان

  • Yun Huang
  • Yubin Zhou
  • Hing-Cheung Wong
  • Yanyi Chen
  • Yan Chen
  • Siming Wang
  • Adriana Castiblanco
  • Aimin Liu
  • Jenny J Yang
چکیده

Stromal interaction molecule 1 (STIM1) is responsible for activating the Ca(2+) release-activated Ca(2+) (CRAC) channel by first sensing the changes in Ca(2+) concentration in the endoplasmic reticulum ([Ca(2+)](ER)) via its luminal canonical EF-hand motif and subsequently oligomerizing to interact with the CRAC channel pore-forming subunit Orai1. In this work, we applied a grafting approach to obtain the intrinsic metal-binding affinity of the isolated EF-hand of STIM1, and further investigated its oligomeric state using pulsed-field gradient NMR and size-exclusion chromatography. The canonical EF-hand bound Ca(2+) with a dissociation constant at a level comparable with [Ca(2+)](ER) (512 +/- 15 microm). The binding of Ca(2+) resulted in a more compact conformation of the engineered protein. Our results also showed that D to A mutations at Ca(2+)-coordinating loop positions 1 and 3 of the EF-hand from STIM1 led to a 15-fold decrease in the metal-binding affinity, which explains why this mutant was insensitive to changes in Ca(2+) concentration in the endoplasmic reticulum ([Ca(2+)](ER)) and resulted in constitutive punctae formation and Ca(2+) influx. In addition, the grafted single EF-hand motif formed a dimer regardless of the presence of Ca(2+), which conforms to the EF-hand paring paradigm. These data indicate that the STIM1 canonical EF-hand motif tends to dimerize for functionality in solution and is responsible for sensing changes in [Ca(2+)](ER).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and Mechanistic Insights into STIM1-Mediated Initiation of Store-Operated Calcium Entry

Stromal interaction molecule-1 (STIM1) activates store-operated Ca2+ entry (SOCE) in response to diminished luminal Ca2+ levels. Here, we present the atomic structure of the Ca2+-sensing region of STIM1 consisting of the EF-hand and sterile alpha motif (SAM) domains (EF-SAM). The canonical EF-hand is paired with a previously unidentified EF-hand. Together, the EF-hand pair mediates mutually ind...

متن کامل

STIM1 translocation to the plasma membrane enhances intestinal epithelial restitution by inducing TRPC1-mediated Ca2+ signaling after wounding.

Early epithelial restitution is an important repair modality in the gut mucosa and occurs as a consequence of epithelial cell migration. Canonical transient receptor potential-1 (TRPC1) functions as a store-operated Ca2+ channel (SOCs) in intestinal epithelial cells (IECs) and regulates intestinal restitution, but the exact upstream signals initiating TRPC1 activation after mucosal injury remai...

متن کامل

Biophysical characterization of the EF-hand and SAM domain containing Ca2+ sensory region of STIM1 and STIM2.

Stromal interaction molecule 1 (STIM1) is an endoplasmic reticulum (ER)-membrane associated Ca(2+) sensor which activates store-operated Ca(2+) entry (SOCE). The homologue, STIM2 possesses a high sequence identity to STIM1 ( approximately 61%), while its role in SOCE seems to be distinct from that of STIM1. In order to understand the underlying mechanism for the functional differences between S...

متن کامل

An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice.

Changes in cytoplasmic Ca2+ levels regulate a variety of fundamental cellular functions in virtually all cells. In nonexcitable cells, a major pathway of Ca2+ entry involves receptor-mediated depletion of intracellular Ca2+ stores followed by the activation of store-operated calcium channels in the plasma membrane. We have established a mouse line expressing an activating EF hand motif mutant o...

متن کامل

Location and function of STIM1 in the activation of Ca2+ entry signals.

Store-operated channels (SOCs) mediate Ca(2+) entry signals in response to endoplasmic reticulum (ER) Ca(2+) depletion in most cells. STIM1 senses decreased ER luminal Ca(2+) through its EF-hand Ca(2+)-binding motif and aggregates in near-plasma membrane (PM) ER junctions to activate PM Orai1, the functional SOC. STIM1 is also present in the PM, although its role there is unknown. STIM1-mediate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The FEBS journal

دوره 276 19  شماره 

صفحات  -

تاریخ انتشار 2009